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Abstract: We prove that inflation is forbidden in the most well understood class of

semi-realistic type IIA string compactifications: Calabi-Yau compactifications with only

standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and

small string coupling. With these ingredients, the first slow-roll parameter satisfies ǫ ≥ 27
13

whenever V > 0, ruling out both inflation (including brane/anti-brane inflation) and de

Sitter vacua in this limit. Our proof is based on the dependence of the 4-dimensional

potential on the volume and dilaton moduli in the presence of fluxes and branes. We also

describe broader classes of IIA models which may include cosmologies with inflation and/or

de Sitter vacua. The inclusion of extra ingredients, such as NS 5-branes and geometric or

non-geometric NS-NS fluxes, evades the assumptions used in deriving the no-go theorem.

We focus on NS 5-branes and outline how such ingredients may prove fruitful for cosmology,

but we do not provide an explicit model. We contrast the results of our IIA analysis with

the rather different situation in IIB.
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1. Introduction

Our desire to understand the large-scale properties of our Universe is one of the motivations

for studying fundamental microphysical theories such as string theory. Indeed, observing

the early Universe may be our most promising path toward confronting string theory with

data. The leading paradigm for explaining the large-scale isotropy, homogeneity, and flat-

ness of the Universe, as well as its O(10−5) seed fluctuations, is cosmological inflation [1 – 4].

Specifically, by assuming that there exist one or more scalar fields that undergo slow rolling

in the early Universe in a potential energy function of just the right shape, one can explain

these large-scale properties and predict the numerical values of as many as eight cosmo-

logical parameters, many of which have now been accurately measured [5 – 7]. The leading

candidate for a fundamental microphysical theory is string theory, and so we would like to

know how generically string theory can accommodate such potential energy functions.

It is rather well known that the conditions for inflation do not arise easily in string

theory, or in other words, that a generic point in field space may not be expected to sat-

isfy the slow-roll conditions [8 – 10]. In part this is because of issues like the η problem

– 1 –



J
H
E
P
1
2
(
2
0
0
7
)
0
9
5

(essentially, that the potential varies too quickly), which also complicate attempts to build

inflationary models in quantum field theory and supergravity theories. There are, however,

three reasons to suspect a priori that string theory can accommodate inflation: firstly, the

potential energy is typically a function of hundreds of fields, which means that there is

a large field space to explore. Secondly, there are an exponentially large number of infi-

nite families of potential energy functions, parameterized by typically hundreds of discrete

fluxes in the compact space [11 – 15]. Thirdly, there are at least many millions of different

topologies, such as Calabi-Yau manifolds, that in general give rise to qualitatively different

physical theories in 4 dimensions. It is reasonable to suspect that occasionally in this vast

space of possibilities, the conditions for inflation are satisfied.

For this reason, the past few years have seen intense investigation into the possibility of

inflation driven by closed string moduli [16 – 20], axions [21 – 25], or brane positions [26 – 33]

in the extra dimensions. In the most intensely studied case of IIB string compactifications

on Calabi-Yau orientifolds, the conclusion at this point is that one can probably build

working models, at the cost of fine-tuning the relevant potentials. Some of these models

could even have interesting observable signatures [34, 35]. Reviews of this general subject

appear in [36 – 40].

One feature of the existing constructions is that they are implicit, relying at some

point on either non-compact models of regions of the compactification space, or on the

ability to perform tunes which (though seemingly possible based on detailed theoretical

considerations) are not performed explicitly. One would ideally like to build simpler mod-

els, where all of the calculations are performed in a completely explicit and reliable way.

Commonly, compactifications suffer from unstabilized moduli in the low energy description,

or the calculations stabilizing moduli apply in a regime that, while apparently numerically

controlled, is not under parametric control.1

In some limits of string theory, however, we now have explicit examples of stabilized

models with parametric control of the moduli potential. The best understood case occurs in

massive IIA string theory; namely IIA string theory with R-R 0-form flux, compactified on a

Calabi-Yau orientifold. The 10-dimensional massive IIA supergravity action was suggested

in [41]. The compactification of this theory on a Calabi-Yau orientifold was performed in

a 4-dimensional supergravity formalism in [42] and the stabilization was obtained in [43].2

The 10-dimensional description of these compactifications was further studied in [45]. Since

these models carry at most N = 1 supersymmetry in 4 dimensions, and gauge groups and

chiral matter can be incorporated in this context, we consider them to be at least semi-

realistic.

An investigation of cosmology in these IIA compactifications was initiated in ref. [46]

by considering some specific simple examples and showing that inflation could not occur

in these examples. In the present work we extend that study. We use a simple scaling

1This in particular applies in any class of stabilized compactifications where the number of choices of

fluxes, branes, etc., while perhaps very large, is finite . In such models, there is perforce a limit on how small

gs can be, namely the smallest gs obtained in the finite list. Of course if the finite number is sufficiently

large, the smallest attainable coupling may be quite small, so this may not be a serious limitation.
2With additional ingredients (geometric flux) stabilization was achieved in [44].
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analysis of various terms which appear in the low-energy 4-dimensional potential to rule

out inflation and de Sitter vacua at large volume and weak coupling in all IIA Calabi-

Yau models with conventional fluxes, D-branes, and O-planes. This means that inflation

imposes the constraint that our Universe is not in this portion of the landscape. We

emphasize that the derivation of this no-go result is only valid in the large volume limit

and can be evaded by various other structures including NS 5-branes as well as geometric

and non-geometric NS-NS fluxes, indicating that IIA compactifications containing these

ingredients may be a good place to look for string models with inflation and/or de Sitter

vacua. Indeed, as we were completing this work we received a copy of [47], in which more

explicit IIA de Sitter models are constructed by using geometric NS-NS fluxes, 5-branes,

and various other ingredients.

The structure of this article is as follows: in section 2 we summarize the IIA super-

gravity theory in 10 dimensions and outline the dimensional reduction to 4 dimensions. We

explain the key step in the analysis of the paper, which involves considering 2-dimensional

slices in the full moduli space parameterized by the volume and dilaton moduli of the

compactification. The behavior of the four (space-time) dimensional potential on these

2-dimensional slices of moduli space allows us to place a lower bound on the slow-roll

parameter ǫ. In section 3 we compute the scaling of the various terms appearing in the

4-dimensional potential energy function V in terms of the two model-independent moduli.

We prove that both inflation and de Sitter vacua are forbidden at large volume and weak

string coupling when standard fluxes, D6-branes, and O6-planes are included; the slow-roll

parameter is bounded below in this case by ǫ ≥ 27

13
whenever V > 0. In section 4 we describe

some additional ingredients such as NS 5-branes, geometric fluxes and non-geometric NS-

NS fluxes which can be included in type IIA and which lead to terms in the 4-dimensional

potential with scaling properties allowing us to evade the no-go theorem. In section 5 we

discuss the type IIB theory. We show how the structure of the IIB theory differs from the

IIA theory from the point of view taken in this paper and discuss the connection of our IIA

results with previous work on inflation in IIB models. We discuss our results in section 6.

More details regarding the kinetic energy and potential energy are provided in appendix A.

2. Type IIA compactifications

We investigate large volume and small string coupling compactifications where it is valid

to perform computations using supergravity. We study the 10-dimensional type IIA super-

gravity theory, where we include conventional NS-NS and R-R field strengths, as well as

D6-branes and O6-planes:

S =
1

2κ2
10

∫

d10x
√−g e−2φ

(

R + 4(∂µφ)2 − 1

2
|H3|2 − e2φ

∑

p

|Fp|2
)

−µ6

∫

D6

d7ξ
√−g e−φ + 2µ6

∫

O6

d7ξ
√−g e−φ (2.1)

where R is the 10-dimensional Ricci scalar, φ is the scalar dilaton field, H3 is the NS-

NS 3-form field strength that is sourced by strings, Fp are the R-R p-form field strengths
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(p = 0, 2, 4, 6) that are sourced by branes, κ2
10 = 8πG10 is the gravitational strength

in 10-dimensions, and µ6 (−2µ6) is the D6-brane (O6-plane) charge and tension. We

have set all fermions to zero as we are interested in solutions with maximal space-time

symmetry. There are also Chern-Simons contributions to the action. These are essentially

topological, and are independent of the dilaton as well as the overall scale of the metric

(in string frame). We expect that as in [43] the contribution to the action from the Chern-

Simons terms will vanish on-shell,3 so that we need not consider it further here. Although

there are some subtle questions regarding the definition of orientifolds in these massive

IIA backgrounds and whether these backgrounds can be described in a weak coupling

string expansion [48, 49], these compactifications seem to be described adequately in the

4-dimensional supergravity formalism of [42], corresponding to the 10-dimensional massive

supergravity analysis when the sources are uniformly distributed in the compactification

space.

2.1 Compactification

We now perform a Kaluza-Klein compactification of this theory from 10 dimensions to 4

dimensions. Let us first focus on the gravity sector. Assuming that we can neglect any

dependence of the Ricci scalar on the compact space coordinates, we can integrate over the

compact space, giving
∫

d10x
√−g10 e−2φR =

∫

d4x
√−g4 Vol e−2φR (2.2)

where Vol is the 6-dimensional volume of the compact space. The volume, dilaton, and

all the other fields that describe the size and shape of the compact space are scalar fields

in the 4-dimensional description, known as moduli. In addition to kinetic energy terms,

the remaining terms in the supergravity action, when reduced to 4 dimensions, describe a

potential function V which depends on the moduli and fluxes in any given model.

The key observation of this paper is that by studying the dependence of the potential

energy function V on only two of the moduli, we can learn a great deal about the structure

of the potential relevant for the possibility of inflation. We define the volume modulus of

the compact space ρ and the dilaton modulus τ by4

ρ ≡ (Vol)
1
3 , τ ≡ e−φ

√
Vol. (2.3)

While V depends on all moduli, we can explore the behavior of this function on the whole

moduli space by considering 2-dimensional slices of the moduli space where all moduli

other than τ and ρ are fixed. By showing that V has a large gradient in the τ -ρ plane on

every slice wherever V is positive, we will be able to rule out inflation on the entire moduli

space, regardless of which fields we would like to identify as the inflaton.

3More precisely, integrating out the 4-dimensional non-dynamical field dC3 as a Lagrange multiplier

gives an equation which must be satisfied by the axions, but the Chern-Simons terms do not otherwise

affect the 4-dimensional potential.
4Note that we have defined the volume modulus in the string frame, since this definition relates to the

Kähler moduli in the IIA theory. This differs from the conventional definition of Kähler moduli in analogous

IIB orientifolds, where the Einstein frame metric is used in defining the chiral multiplets.
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In order to bring the gravity sector into canonical form, we perform a conformal trans-

formation on the metric to the so-called Einstein frame:

gE
µν ≡ τ2

m̄2
P κ2

10

g4
µν , (2.4)

where m̄P = 1/
√

8πG ≈ 2 × 1018 GeV is the (reduced) Planck mass and G is the 4-

dimensional Newton constant. By re-expressing R in terms of a 4-dimensional Ricci scalar

and performing the conformal transformation, one finds that the gravity sector is canonical

and that the fields ρ and τ carry kinetic energy that is diagonal. Although ρ and τ do not

have canonical kinetic energies, they are related to fields which do:

ρ̂ ≡
√

3

2
m̄P ln ρ, τ̂ ≡

√
2 m̄P ln τ. (2.5)

Altogether we obtain the effective Lagrangian in 4 dimensions in the Einstein frame

L =
1

16πG
RE −

[

1

2
(∂µρ̂)2 +

1

2
(∂µτ̂)2 + . . .

]

− V (2.6)

where the Ricci scalar RE and all derivatives are defined with respect to the Einstein

metric. The dots indicate further kinetic energy terms from all the other fields of the

theory associated with the compactification (φi): the so-called Kähler moduli, complex

structure moduli, and axions.5 The important point is that their contributions will always

be positive. More details are provided in appendix A.1. All contributions from the field

strengths and D-branes & O-planes from eq. (2.1) are described by some potential energy

function V .

2.2 The slow-roll condition

From this action we can derive the slow-roll conditions on the potential V for inflation. In

order to write down the conditions in detail we would need to know the precise form of the

kinetic energy with respect to all the moduli. This can be done cleanly in the 4-dimensional

supergravity formalism, as mentioned in appendix A.1. The important point here is that

the first slow-roll parameter ǫ involves partial derivatives of the potential with respect to

each direction in field space, and that the contribution from ρ̂, τ̂ , φi is non-negative. In

fact it is roughly the square of the gradient of lnV . The contributions from ρ̂ and τ̂ thus

give the following lower bound:

ǫ ≥ m̄2
P

2

[

(

∂ ln V

∂ρ̂

)2

+

(

∂ ln V

∂τ̂

)2
]

. (2.7)

A necessary condition for inflation is ǫ ≪ 1 with V > 0. We will now prove that this

condition is impossible to satisfy in this IIA framework, at large volume and weak coupling

where our calculations apply.

5The axions arise from zero-modes of the various gauge fields.
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3. No-go theorem

Having discussed the gravity and kinetic energy sector of the theory, let us now describe

the form of the potential energy function V . By using the bound on ǫ we will then prove

that inflation is forbidden for any Calabi-Yau compactification of type IIA string theory in

the large volume and small string coupling limit, when only conventional NS-NS and R-R

field strengths, D6-branes and O6-planes are included.

3.1 Potential energy

The potential energy arises from the dimensional reduction of the terms in (2.1) associated

with the various field strengths H3 & Fp (p = 0, 2, 4, 6) and the D6-branes & O6-planes.

Let us focus on some field strength Fp. Such a field can have a nonvanishing integral over

any closed p-dimensional internal manifold (homology cycle) of the compact space, and

must satisfy a generalized Dirac charge quantization condition:
∫

Σ

Fp ∝ fΣ, (3.1)

where fΣ is an integer associated with number of flux quanta of Fp through each p-

dimensional cycle Σ. By choosing different values for fΣ over a basis set of p-cycles,

one obtains a landscape of possible allowed potential energy functions V .

The energy arising from a p-form flux Fp comes from a term in (2.1) proportional to

|Fp|2; since the p-form transforms as a covariant p-tensor (i.e., has p lower indices), we

contract with p factors of gµν
6 , so that

|Fp|2 ∝ ρ−p (3.2)

in the string frame. By including the appropriate factors of the volume and dilaton from

the compactification and performing the conformal transformation to the Einstein frame,

we have the following contributions to V :

V3 ∝ ρ−3τ−2 for H3,

Vp ∝ ρ3−pτ−4 for Fp. (3.3)

We also need the contribution from D6-branes and O6-planes. In the Einstein frame they

scale as

VD6 ∝ τ−3 for D6-branes,

VO6 ∝ −τ−3 for O6-planes, (3.4)

where we have indicated that O6-planes provide a negative contribution, while all others

are positive.

Altogether, we have the following expression for the scalar potential in 4-dimensions

V = V3 +
∑

p

Vp + VD6 + VO6

=
A3(φi)

ρ3τ2
+

∑

p

Ap(φi)

ρp−3τ4
+

AD6(φi)

τ3
− AO6(φi)

τ3
. (3.5)
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Here we have written the various coefficients as Aj (≥ 0), which in general are complicated

functions of all the other fields of the theory φi, namely the remaining set of Kähler moduli,

complex structure moduli, and axions. The coefficients Aj also depend on the choice of

flux integers fΣ. This means that V is in general a function of hundreds of fields, for each

of the exponentially large number of infinite families of possible flux combinations on each

of the many available Calabi-Yau manifolds. We have simply described its dependence on

two of the fields: ρ and τ . An alternative proof of eq. (3.5) from the perspective of the

4-dimensional supergravity formalism is given in appendix A.2. As discussed in ref. [43]

this potential ensures that there exist special points in field space which stabilize all the

geometric moduli and many axions. We are interested, however, in exploring the full moduli

space in search of inflation.

3.2 Proof of no-go theorem

We find that for any potential of the class we have constructed so far, inflation is impossible

anywhere in the moduli space. The proof of this result is quite simple. The key is to observe

that the potential in eq. (3.5) satisfies

−ρ
∂V

∂ρ
− 3τ

∂V

∂τ
= 9V +

∑

p

p Vp

≥ 9V, (3.6)

where the inequality comes from the fact that all Vp ≥ 0 (Ap ≥ 0) and p ≥ 0. Now,

assuming we are in a region where V > 0, which is necessary for inflation, we can divide

both sides by V and rewrite this inequality in terms of ρ̂ and τ̂ as

m̄P

∣

∣

∣

∣

∣

√

3

2

(

∂ ln V

∂ρ̂

)

+ 3
√

2

(

∂ ln V

∂τ̂

)

∣

∣

∣

∣

∣

≥ 9. (3.7)

This implies that it is impossible for both terms in eq. (2.7) to be simultaneously small.

Specifically, comparing this inequality with eq. (2.7), we see that
√

2ǫ/m̄P is the distance

to the origin on the plane spanned by (∂ lnV/∂ρ̂, ∂ ln V/∂τ̂ ), while a sloped band around

the origin is forbidden, implying the existence of a lower bound on ǫ. By minimizing ǫ

subject to the constraint (3.7), we find the bound on the slow-roll parameter ǫ to be

ǫ ≥ 27

13
whenever V > 0. (3.8)

Hence both inflation and de Sitter vacua are forbidden everywhere in field space.

Indeed in any vacuum ∂V/∂ρ = ∂V/∂τ = 0, so eq. (3.6) implies V = −(
∑

pVp)/9. By

assuming Vp > 0 for at least one of p = 2, 4, or 6, then Minkowski vacua are forbidden also.6

This type of relation was used in [43] to show that vacua in a specific IIA compactification

must be anti-de Sitter, and in [50] to rule out a simple F-term uplift of this model; here we

6We almost certainly need Vp > 0 for at least one of p = 2, 4, or 6 in order to be in the large volume and

small string coupling limit, since the 3-form, 0-form, and number of D6/O6 planes are tightly constrained

by a tadpole condition.
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have shown that this relation holds very generally in IIA compactifications, and furthermore

rules out inflation anywhere on moduli space for potentials containing only terms of the

form (3.5). For stabilized compactifications, the implication is that the field vector always

undergoes fast rolling from a region with V > 0 towards an anti-de Sitter vacuum.

The no-go theorem we have derived here can be interpreted as defining a necessary

condition for inflation in IIA models: in order to inflate, a IIA compactification must

contain some additional structure beyond that considered so far which gives a term in the

potential V whose scaling leads to a term on the r.h.s. of (3.6) with a coefficient less than

9 if positive or greater than 9 if negative. In the next section we turn to a discussion of

specific types of structure which can realize this necessary condition for inflation.

4. Evading the no-go theorem

In the analysis which led to the preceding no-go theorem for inflation in IIA compactifica-

tions, we allowed a specific set of ingredients in the IIA models considered. Following [43],

we included NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes, which are sufficient

to stabilize all geometric moduli. Because D6-branes and anti-D6-branes give terms to V

which scale in the same way, this no-go theorem rules out brane-antibrane inflation as well

as inflationary models using other moduli as the inflaton. Corrections to 10-dimensional

supergravity which arise at small compactification volume may evade our no-go result, so

one approach to finding a IIA compactification with inflation is to include finite volume

corrections to the Kähler potential. There are also other structures we can include in a

compactification besides those already mentioned which can evade the no-go result. In this

section we consider other possibilities which give rise to terms in the potential V which

have scaling coefficients violating (3.6). This may give some guidance for where to look

to find IIA compactifications with inflation and/or de Sitter vacua. Note that many of

the structures suggested go beyond the range of compactifications which are so far well

understood in string theory.

4.1 Various ingredients

One obvious possibility is to include Dp-branes and Op-planes of dimensionality other than

p = 6. The scaling of the resulting contributions to V are as follows

VDp ∝ ρ
p−6
2 τ−3 for Dp-branes,

VOp ∝ −ρ
p−6
2 τ−3 for Op-planes. (4.1)

In these cases, the right hand of eq. (3.6) is (12− p/2)VDp/Op, so the no-go theorem applies

to Dp-branes with p ≤ 6 and Op-planes with p ≥ 6, but is evaded otherwise. Since the

branes must extend in all non-compact directions of space-time7 in IIA we can only consider

p = 4, 8. Wrapping such a brane, however, would either require a compactification with

non-trivial first homology class H1 or finite π1, or perhaps require the use of so-called

coisotropic 8-branes [51, 52]. These branes carry charge and so would generate additional

7Otherwise they would describe localized excitations in an asymptotic vacuum not including these branes.
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tadpoles which would need to be cancelled, as well as potentially breaking supersymmetry.

Compactifications with branes of this type have not been studied extensively in the string

theory literature, but it would be interesting to investigate this range of possibilities further.

Another possibility is to include more general NS-NS fluxes, such as geometric fluxes a

la Scherk and Schwarz [53] or non-geometric fluxes [54]. Geometric fluxes parameterize a

“twisting” away from Calabi-Yau topology, generalizing the notion of a twisted torus [53,

55]. These fluxes are associated with a metric with curvature on the compact space.

Geometric fluxes arise under T-duality or mirror symmetry when an NS-NS 3-form H has a

single index in a dualized direction [56]. Further T-dualities generate non-geometric fluxes,

described in [57] through the sequence T : Habc → fa
bc → Qab

c → Rabc, where f parameterize

geometric fluxes, Q are locally geometric but globally non-geometric fluxes which can in

some cases be realized in the language of “T-folds” [58, 59], and R parameterize fluxes

associated with compactifications which are apparently not even locally geometric. These

general NS-NS fluxes and the associated compactifications are still poorly understood.

From the T-duality picture, however, it is straightforward to determine the scalings of these

3 types of fluxes. Each T-duality inverts the size of a dimension of the compactification,

replacing a factor of ρ−1 in the scaling with ρ, so we have

Vf ∝ ±ρ−1τ−2 for geometric (f) flux,

VQ ∝ ±ρ τ−2 for Q flux,

VR ∝ ±ρ3τ−2 for R flux. (4.2)

Applying the linear operator of eq. (3.6) to each of these terms gives a right hand side of

7Vf, 5VQ, and 3VR, respectively. So although our no-go theorem applies when such terms

are negative, it is evaded if any of these contributions are positive. Among these fluxes, the

best understood are geometric fluxes, which are realized in many simple compactifications

such as twisted tori [44, 53, 55]. Compactification on spaces with these fluxes (and other

ingredients) is studied in the forthcoming paper by Silverstein [47], where it is shown that

de Sitter vacua can indeed be realized in such backgrounds. This is a promising place

to look for string inflation models. Note, however, that general NS-NS fluxes cannot in

general be taken to the large volume limit. For example, fluxes of the Q type involve a

T-duality inverting the radius of a circle in a fiber when a circle in the base is traversed.

Thus, somewhere the size of the fiber must be sub-string scale. This makes solutions of

the naive 4-dimensional supergravity theory associated with flux compactifications such as

those found in [60] subject to corrections from winding modes and also to uncontrolled

string theoretic corrections if curvatures become large.

Another possible ingredient which can be added to the IIA compactification models are

NS 5-branes; these are the magnetic duals of the string. Such objects are non-perturbative

and carry tension in 10 dimensions that scales as g−2
s = e−2φ. While they backreact more

significantly than D-branes and so are not as simple to describe at the supergravity level,

their presence can be captured by adding a term of the form

−µ5

∫

NS5

d6ξ
√−g e−2φ (4.3)

– 9 –
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to the action of eq. (2.1). The compactification and conformal transformation yields a new

term that scales as

VNS5 ∝ ρ−2τ−2, (4.4)

yielding a right hand side of eq. (3.6) of 8VNS5, hence evading the no-go theorem. To satisfy

tadpole cancellation, one would probably wish to add metastable pairs of separated NS

5-branes and anti-NS 5-branes, wrapping distinct isolated curves in the same homology

class. Such configurations have been a focus of study in the dual IIB theory in recent

works, starting with [61].

4.2 An illustration

In this section we illustrate how the above ingredients may be useful from the point of

view of building de Sitter vacua and inflation. We focus the discussion on NS 5-branes,

which appear particularly promising. We will not attempt an explicit construction, since

that would take us beyond the scope of this article. Our goal is only to show that simple,

available ingredients in the IIA theory have energy densities which scale with the volume

and dilaton moduli in a way which suffices to overcome our no-go theorem, which was

based purely on scalings of energy densities. This should act as a guide to model building,

but should be taken in the heuristic spirit it is offered.

Using the potential of eq. (3.5) and adding to it a (necessarily) positive term from NS

5-branes wrapping 2-cycles, we obtain8

V =
A3(φi)

ρ3τ2
+

∑

p

Ap(φi)

ρp−3τ4
− AO6(φi)

τ3
+

ANS5(φi)

ρ2τ2
. (4.5)

Let us now streamline V and focus on the most important features of this setup; we set

A2 = A6 = 0, and expect the remaining coefficients to scale with fluxes and numbers of

planes and branes as

A3 ∼ h2
3, A0 ∼ f2

0 , A4 ∼ f2
4 , AO6 ∼ NO6, ANS5 ∼ g(ω)NNS5, (4.6)

where we have introduced a function g of the modulus ω associated with the 2-cycle

wrapped by each NS 5-brane.

There is a tadpole constraint that the charge on the O6-plane must be balanced by

the fluxes from H3 and F0, i.e., h3f0 ∼ −NO6. We use this to eliminate h3. Now since

it has no effect on the kinetic energy, let us rescale our fields as: ρ → ρ
√

|f4/f0| and

τ → τ
√

|f0f
3
4 |/NO6. Then we have

V = Vflux

[

B3(φi)

ρ3τ2
+

∑

p

Bp(φi)

ρp−3τ4
− BO6(φi)

τ3
+

BNS5(φi)

ρ2τ2

]

(4.7)

with Vflux ≡ N4
O6/

√

|f3
0 f9

4 |, and

B3 ∼ 1, B0 ∼ 1, B4 ∼ 1, BO6 ∼ 1, BNS5 ∼ c(ω) ≡ g(ω)NNS5

√

|f3
0 f4|/N2

O6. (4.8)

8We have set AD6 = 0 as it adds little to the analysis.
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Figure 1: The potential V (τ̂ )/Vflux with (m̄P = 1) B3 = 1/4, B0 = 1/4, B4 = 3/8, BO6 = 2, and

ρ satisfying ∂V/∂ρ = 0. From bottom to top, the curves correspond to the following choices of c :

2.183 (anti-de Sitter), 2.205 (Minkowski), 2.227 (de Sitter), and 2.280 (inflection), respectively.

So the shape of the potential is essentially controlled by the parameter c.

Let us make some comments on the value of c which determines the contribution

of the NS 5-brane. In the large f4 flux limit of [43], c is parametrically larger than all

other contributions, including that from the 3-form flux to which we compare: the NS

5-brane contribution has the same scaling with τ , but scales more slowly to zero as ρ → ∞.

Therefore, one would expect that one needs small NNS5 to push V up without causing a

runaway to infinite volume. As we will see, we need c to be fined tuned and O(1). An

analogous situation occurs in IIB string theory with compactifications involving anti-D3

branes and non-perturbative volume stabilization. There the presence of strong warping

allows one to construct states where the anti-D3 energy density is exponentially suppressed,

naturally providing a small coefficient to the perturbation of the energy density [62]. This

plays an important role in de Sitter constructions in that context [63], and one might expect

an analogous mechanism (involving large warping or a very small cycle) could similarly

dynamically explain a small g(ω) to compensate large f4 in the IIA context. We could also

imagine a compactification where NO6 is very large to achieve the same result.

In any case, by treating c as a continuous parameter and ignoring the dynamics of

all other moduli, we can obtain a meta-stable de Sitter vacuum. We set (m̄P = 1) B3 =

1/4, B0 = 1/4, B4 = 3/8, BO6 = 2, and stabilize ρ by satisfying ∂V/∂ρ = 0. In figure 1 we

plot V = V (τ̂) of eq. (4.7) for different choices of BNS5 = c. We find that there are critical

values of c: for a Minkowski vacuum cM ≈ 2.205 and for a point of inflection cI ≈ 2.280.

For c < cM an anti-de Sitter vacuum exists, for cM < c < cI a de Sitter vacuum exists, and
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for c > cI no vacuum exists. For c close to c+
M we expect the de Sitter vacuum lifetime to

be long, as in the KKLT meta-stable vacuum of type IIB [63].

If one could realize such a construction explicitly in a controlled regime of the IIA the-

ory, then we anticipate that the opportunities to realize inflation will be greatly enhanced.

For example, the local maximum in figure 1 may be useful since ǫ → 0 there. It will

often suffer, however, from the so-called η problem; the second slow-roll parameter (which

measures the second derivative of the potential) will typically be large and negative. It is

possible that, for example, by moving in another transverse direction at the hill-top one

could build some form of hybrid-inflation. We do note that by choosing c = cI we would

immediately solve the η problem and have inflection-point-inflation as advocated in [64]. In

this situation, however, inflation would finish with two difficulties; runaway moduli and lit-

tle to no reheating. A different approach is to simply fix the volume and the dilaton at a de

Sitter (or Minkowski) minimum with high mass and strictly use other lighter moduli to drive

inflation in transverse directions. Scenarios such as N-flation may be possible here [22].

5. Type IIB compactifications

In this section we discuss the relationship between the results we have derived here for IIA

string theory and previous work on inflation in type IIB string theory. Although the type

IIA and IIB string theories are related through T-duality, this duality acts in a complicated

way on many of the ingredients used in constructing flux compactifications. The basic IIB

flux compactifications of [65] (see also [66 – 68]) involve H-flux, F3-flux, D3-branes and

O3-planes. T-duality/mirror symmetry on such compactifications transforms the NS-NS

H-flux into a complicated combination of H-flux, geometric flux and non-geometric flux

which generically violates the restrictions needed in the no-go theorem we have proven

here. Conversely, the backgrounds which we have proven here cannot include inflation are

T-dual/mirror to complicated IIB backgrounds with geometric and non-geometric fluxes.

Furthermore, the volume modulus used in our analysis is dual to a complex structure

modulus in the IIB theory which is difficult to disentangle from the other moduli, so that

proving the analogous no-go theorem in IIB, on the exotic class of backgrounds where it is

relevant, would be quite difficult without recourse to duality.

Despite these complications, we can easily explain why standard IIB flux vacua behave

so differently with respect to potential constructions of de Sitter space and inflation as seen

through the methods of this paper. For IIB flux vacua, the basic ingredients of H-flux,

F3-flux, D3-branes and O3-planes give contributions to the 4-dimensional potential which

scale as

e2φ

ρ6
,

e4φ

ρ6
,

e3φ

ρ6
, −e3φ

ρ6
(5.1)

respectively.9 Thus, the scaling equation (3.6) is not the appropriate equation for gaining

9This ρ scales as Vol1/3 defined in the string frame, as in section II, and should not be confused with

the ρ modulus of e.g. [65], which scales as Vol2/3 defined in the Einstein frame.
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useful information about the cosmological structure. Instead, we simply have

−ρ
∂V (φ, ρ)

∂ρ
= 6V (φ, ρ) . (5.2)

This shows immediately that any classical vacuum must have V = 0, as is well known from

the tree-level no-scale structure of this class of models [65]. When the dilaton and complex

structure moduli are chosen to fix V = 0 then there is a classical flat direction. When such

moduli cannot be chosen then the (positive) potential causes a runaway to large volume.

In such a simple setting, one can show that ǫ ≥ 3 whenever V > 0, but this should not be

viewed as a serious obstacle to realizing inflation or de Sitter vacua. This is because the

classical flat directions along which V = ∂V/∂ρ = 0 can be lifted by including quantum

contributions (or other fluxes etc) to the potential, and then the naive bound on ǫ is irrele-

vant. Typically, non-perturbative corrections to the superpotential are included to stabilize

the Kähler moduli. This should be contrasted with the classical stabilization in IIA.10

In this general IIB setting, starting with the no-scale vacuum and including various

corrections to achieve de Sitter, many inflationary models have been proposed. The basic

strategy, starting with [29], has usually been to stabilize the dilaton and volume moduli at a

high scale, and inflate at a lower energy scale. Then, the dilaton and volume contributions

to ǫ (which were the focus of our no-go theorem in the IIA context) are simply absent. The

most explicit models to date appear in [31], though one should consult the reviews [36 – 40]

for a much more extensive list of approaches and references.

6. Discussion

In this paper we have demonstrated that a large class of flux compactifications of type

IIA string theory cannot give rise to inflation in the regime of moduli space where we

have parametric control of the potential. This result applies to large-volume, weak cou-

pling compactifications on arbitrary Calabi-Yau spaces with NS-NS 3-form flux, general

R-R fluxes, D6-branes and O6-planes. These ingredients are arguably the most well un-

derstood in IIA compactifications. The no-go theorem of section 3 applies in particular

to the T 6/Z
2
3 orientifold model of ref. [43] and the T 6/Z4 orientifold model of ref. [69],

and explains the numerical results of ref. [46] which suggested that inflation is impossible

in these models. The no-go theorem we have derived here, however, applies to all other

Calabi-Yau compactifications of this general type as well. So the simplest part of the IIA

flux compactification landscape does not inflate. This implies the following constraint:

the portions of the landscape that are possibly relevant to phenomenology will necessarily

involve interplay of more diverse ingredients, as has also been found in the IIB theory.

We emphasize that while our derivation has only involved two moduli (the volume ρ

and the dilaton τ) we are not assuming that either of those moduli necessarily play the role

of the inflaton. Instead, inflation by any modulus (or brane/anti-brane) is always spoiled

due to the fast-roll of ρ and/or τ . This follows because a necessary condition for slow-roll

10Note that in the absence of fluxes, branes and orientifolds, mirror symmetry relates supersymmetric

IIA and IIB compactifications. In this case V = 0 exactly.
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inflation is that the potential be flat in every direction in field space, as quantified by ǫ.

In fact because the first slow-roll parameter is so large ǫ ≥ 27
13

, there can never be many

e-foldings, even ruling out so-called fast-roll inflation [70]. We point out that this result is

slightly non-trivial because it requires analyzing both ρ and τ , as in eq. (3.6), and cannot

be proven by focussing on only one of them.

A simple corollary of our result is that no parametrically controlled de Sitter vacua exist

in such models. We emphasize, though, that proving the non-existence of inflation is a much

stronger statement than proving the non-existence of de Sitter vacua. In particular we can

imagine a priori a scenario where, although the vacuum is anti-de Sitter (or Minkowski) or

there is no vacuum at all, inflation is still realized somewhere in a region where V > 0. We

find, however, that this does not occur. It is intriguing that the proof of the non-existence

of inflation is so closely related to that of the non-existence of de Sitter. This suggests that

there may be a close connection between building de Sitter vacua and realizing inflation.

Our result can be interpreted as giving a necessary condition for inflation in IIA models.

To have inflation, some additional structure must be added which gives rise to a potential

term in 4 dimensions with scaling such that −ρ∂V/∂ρ − 3τ∂V/∂τ = αV with a coefficient

α < 9 for a positive contribution and α > 9 for a negative contribution. We described

various ingredients which give rise to such terms; compactifications including these ingre-

dients may be promising places to look for inflationary models. Some of these ingredients

take us outside the range of string compactifications which are understood from a pertur-

bative/supergravity point of view. Among the possibilities which evade the assumptions

made in deriving the no-go theorem are other NS-NS fluxes, such as geometric and non-

geometric fluxes. It is currently difficult to construct models with such generic fluxes in a

regime that is under control, but progress in this direction has been made in [47], where IIA

de Sitter vacua are found using a specific set of geometrical fluxes and other ingredients.

Another promising direction which we have indicated here (also incorporated in [47]) is to

include NS 5-branes and anti-NS 5-branes on 2-cycles in the Calabi-Yau. More work is

needed to find explicit models where these branes are stabilized in a regime allowing de

Sitter vacua and inflation, but this does not seem to be impossible or ruled out by any ob-

vious considerations. In addition to the mechanisms we have discussed, there are probably

other structures (e.g., D-terms [71, 72]) which violate the conditions of the no-go theorem.

Including any of these ingredients does not guarantee that inflation will be realized. It

may be the case that a slightly more general no-go theorem for inflation exists with certain

combinations of additional ingredients. This may follow from studying other moduli, since

any field can ruin inflation by fast-rolling. It may also be that with more work an elegant

realization of inflation and de Sitter vacua can be found in type IIA string theory. This

deserves further investigation.
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A. 4-dimensional N = 1 supergravity

It was shown in [42] that with the ingredients used in section 3, the dimensional reduction

of massive IIA supergravity can be described in the language of a 4-dimensional N = 1

supergravity theory in terms of a Kähler potential and superpotential.

A.1 Kinetic energy from Kähler potential

The authors of ref. [42] showed that in the large volume limit the Kähler potential is given

by K = KK + KQ where

KK = −m̄2
P ln

(

4

3
κabcv

avbvc

)

, (A.1)

KQ = −2m̄2
P ln

(

2 Im(CZλ)Re(Cgλ) − 2Re(CZk)Im(Cgk)
)

(A.2)

Here va are the Kähler moduli, κabc are the triple-intersection form constants, the set of

Z and g are the co-ordinates in some basis of a holomorphic 3-form that describes the

complex structure moduli, and C is the “compensator” which incorporates the dilaton. If

the set of complex moduli is denoted ψi, then the kinetic energy is given by

T = −Kij̄∂µψi∂µψj̄ (A.3)

with corresponding first slow-roll parameter

ǫ = m̄2
P

Kij̄ViVj̄

V 2
. (A.4)

Let us focus on the Kähler contribution. We write the Kähler moduli as ψa = aa +i va,

so the kinetic energy is given by

TK = −1

4

∂2KK

∂va∂vb

(

∂µva∂µvb + ∂µaa∂µab
)

. (A.5)

Now we change coordinates from va to {ρ, γa} as follows:

va = ρ γa, with κabcγ
aγbγc = 6, (A.6)
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so Vol = ρ3. Then using ∂µ(κabcγ
aγbγc) = 0, we obtain:

TK = − m̄2
P

[

3(∂µρ)2

4 ρ2
− 1

4
κabcγ

c∂µγa∂µγb +
κacdγ

cγdκbefγeγf − 4κabcγ
c

16 ρ2
∂µaa∂µab

]

. (A.7)

By switching from ρ to ρ̂, we see that the first term is precisely the kinetic energy for ρ̂.

The remaining kinetic energy terms for γa and aa are block diagonal (there are no cross

terms involving ∂µρ ∂µγa etc), and this has an important consequence: We know that in

the physical region the total kinetic energy must be positive, so each of the above 3 terms

must be positive. Hence, TK = −(∂µρ̂)2/2 + positive.

For the complex structure/dilaton sector the procedure is similar, although more sub-

tle. In (A.2) the expression for KQ is not a completely explicit function of the moduli; al-

though Re(CZk) and Re(Cgk) are explicitly half of the complex structure moduli, Im(CZk)

and Im(Cgk) are only functions of the remaining complex structure moduli. Nevertheless,

the kinetic term is again block diagonal. To see this, note that the compensator C, and

hence all moduli in this sector, are proportional to τ . Furthermore, the Z and g are

constrained to the surface: KQ = −2m̄2
P ln(τ2). This is analogous to the Kähler sector.

Without going through the details here, we find TQ = −(∂τ̂)2/2+positive. In fact we know

this must be true from the 10-dimensional point of view; the dilaton modulus is inherited

directly from 10 dimensions, and so cannot possibly give rise to mixed kinetic terms with

the complex structure moduli in 4 dimensions.

A.2 Potential energy from superpotential

From [42] the superpotential in the IIA theory is given by W = W K + W Q where

W K = f6 + f4at
a +

1

2
f2aκabct

btc − f0

6
κabct

atbtc, (A.8)

W Q =
(

h̄λξλ − hkξ
k
)

+ 2i
(

h̄λRe(Cgλ) − hkRe(CZk)
)

. (A.9)

We will not explain all the details of this here; the interested reader is pointed to refs. [42,

43]. For our present purposes it suffices to note that Im(ta) = va ∝ ρ and Im(W Q) ∝ τ .

Hence, the superpotential is cubic in ρ and linear in τ .

From the supergravity formula for the Einstein frame potential

V = eK/m̄2
P

(

DiWKij̄DjW − 3
|W |2
m̄2

P

)

, (A.10)

we easily infer the dependence on ρ and τ . Firstly, since the constraints on γa and complex

structure imply that K = −m̄2
P ln(8ρ3τ4), the pre-factor scales as

eK/m̄2
P ∝ ρ−3τ−4. (A.11)

Also, the scaling contributions from the parenthesis in eq. (A.10), which is roughly |W |2,
can be easily determined. By analyticity, only terms of the form ρpτ q can appear where

p + q is even. This leaves only the following 7 possible scalings: τ2, ρ6, ρ4, ρ2, 1, ρ3τ, ρτ . By

multiplying by the pre-factor, we see that the first 6 terms are precisely those that arise
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from H3, F0, F2, F4, F6, and D6/O6, respectively. The 7th term (ρτ) is new, but cancels

between the two terms inside the parenthesis of eq. (A.10). Hence we obtain the form of

the potential given in eq. (3.5).
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